28 research outputs found

    Dynamic Power Provisioning System for Fog Computing in IoT Environments

    Get PDF
    Large amounts of data are created from sensors in Internet of Things (IoT) services and applications. These data create a challenge in directing these data to the cloud, which needs extreme network bandwidth. Fog computing appears as a modern solution to overcome these challenges, where it can expand the cloud computing model to the boundary of the network, consequently adding a new class of services and applications with high-speed responses compared to the cloud. Cloud and fog computing propose huge amounts of resources for their clients and devices, especially in IoT environments. However, inactive resources and large number of applications and servers in cloud and fog computing data centers waste a huge amount of electricity. This paper will propose a Dynamic Power Provisioning (DPP) system in fog data centers, which consists of a multi-agent system that manages the power consumption for the fog resources in local data centers. The suggested DPP system will be tested by using the CloudSim and iFogsim tools. The outputs show that employing the DPP system in local fog data centers reduced the power consumption for fog resource providers

    Data Confidentiality in Mobile Ad hoc Networks

    Full text link
    Mobile ad hoc networks (MANETs) are self-configuring infrastructure-less networks comprised of mobile nodes that communicate over wireless links without any central control on a peer-to-peer basis. These individual nodes act as routers to forward both their own data and also their neighbours' data by sending and receiving packets to and from other nodes in the network. The relatively easy configuration and the quick deployment make ad hoc networks suitable the emergency situations (such as human or natural disasters) and for military units in enemy territory. Securing data dissemination between these nodes in such networks, however, is a very challenging task. Exposing such information to anyone else other than the intended nodes could cause a privacy and confidentiality breach, particularly in military scenarios. In this paper we present a novel framework to enhance the privacy and data confidentiality in mobile ad hoc networks by attaching the originator policies to the messages as they are sent between nodes. We evaluate our framework using the Network Simulator (NS-2) to check whether the privacy and confidentiality of the originator are met. For this we implemented the Policy Enforcement Points (PEPs), as NS-2 agents that manage and enforce the policies attached to packets at every node in the MANET.Comment: 12 page

    High Priority Requests in Grid Environment

    Get PDF

    Email Filtering Using Hybrid Feature Selection Model

    Get PDF

    Bio-inspired Hybrid Feature Selection Model for Intrusion Detection

    Get PDF

    Mobility in Cloud Systems

    No full text
    corecore